Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology

Department of Electronics and communication Engineering

BEI704- VIRTUAL INSTRUMENTATION

Eighth Semester, (Even Semester)

Course (catalog) description

- To provide knowledge on design of process control by using virtual instrumentation techniques
- To provide knowledge in process analysis by VI tools.
- To give basic knowledge in describing function analysis.
- Get adequate knowledge VI tool sets

Compulsory/Elective course: Elective for ECE students

Credit hours : 3 credits

Course Coordinator : Ms R.Abinethri, Asst Professor

Instructors :

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Ms R.Abinethri	Final Year	EI Block			9.00-9.50 AM
Mr.Vijayan	Final Year	El Block		Vijayan1987@gmail.com	12.45-1.15 PM

Relationship to other courses:

Pre –requisites : Electronic Instrumentation

Assumed knowledge : The students will have a electronics and instrumentation background obtained at a high

school (or Equivalent) level. In particular, working knowledge of basic instrumentation

including Gates, Diodes, Transistors are assumed.

Following courses : Biomedical instrumentation

UNIT - I D.C. AND A.C CIRCUITS

6

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem – Thevenin's and Norton's Theorem – Problems.

UNIT - II ELECTRICAL MACHINES

6

Construction, principle of operation, Basic Equations and applications - D.C.Generators and

D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

UNIT – III BASIC MEASURMENT SYSTEMS

6

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

UNIT IV - SEMICONDUCTOR DEVICES

6

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and its Application – HWR, FWR – Zener Diode – BJT (CB, CE, CC) configuration & its characteristics.

UNIT V - DIGITAL ELECTRONICS

6

Number system – Logic Gates – Boolean Algebra – De-Morgan's Theorem – Half Adder & FullAdder – Flip Flops.

Total No. of Periods: 30

TEXT BOOKS:

- 1. N.Mittle "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004.
- Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill

REFERENCE BOOKS:

- Edminister J.A. "Theory and problems of Electric Circuits" Schaum's Outline Series. McGraw Hill Book Compay, 2nd Edition, 1983.
- Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill Internatinal Editions, 1993.
- 3. D. P. Kothari and I. J. Nagrath "Electric machines" Tata McGraw-Hill Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

Computer usage: Nil

Professional component

General-0%Basic Sciences-0%Engineering sciences & Technical arts-0%Professional subject-100%

Broad area: Circuit Theory | Electronics | Transmission Lines and Networks | Linear Integrated Circuits

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit problems. This course emphasizes:		Correlates to program outcome	
Cripinosizes.	Н	М	L
1. To develop an understanding of the fundamental laws and elements of electric circuits.	d	a,,b,c,g,l	J,k
2. To develop the ability to apply circuit analysis to DC and AC circuits	b,c,g,l	a,d,e	J,k
3. To understand the measuring instruments of electrical quantities and its constructions.	a,d,e	b,g,l	j,k
4. Introduce students to construction of machines.	a,d,e	b,c,g,l	f,j
5. To learn the working operation of logic gates, flip flops and registers	е	a,b,c,d,g	j,k

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I	INTRODUCTION		
1.	Virtual Instrumentation: Historical	No	
	perspective- advantages		
2.	block diagram and Architecture of a	No	
	virtual instrument -		
3.	Conventional Instruments versus	No	
	Traditional Instruments		[T1]
4.	Data-flow techniques	No	
5.	Graphical programming in data flow	No	
6.	comparison with conventional	No	
	programming		
UNIT II	VI PROGRAMMING TECHNIQUES		
7.	VIs and sub-VIs, loops and charts	No	
8.	Arrays, clusters and graphs	No	
9.	case and sequence Structures,	No	
10.	Formula nodes, local and global	No	
	variables		
11.	State machine, string and file I/O	No	
12.	Instrument Drivers, Publishing	No	[T1]
	measurement data in the web		
UNIT III	DATA ACQUISITION		
13.	Introduction to data acquisition on PC,	No	
	Sampling fundamentals		
14.	Input/output techniques And buses.	No	
15.	Latest ADCs, DACs, Digital I/O, counters	No	
	and timers, DMA		T1]
16.	Software and Hardware installation,	No	
	Calibration, Resolution, Data		
	acquisition interface requirements		
17.	Issues involved in selection of Data	No	
	acquisition cards		
18.	VISA and IVI.	No	
UNIT IV	VI TOOLSETS	T	1
19.	Use of Analysis tools, Fourier	No	
	transforms, power spectrum		_
20.	correlation methods, Windowing and	No	
	filtering. Application of VI in process		
	control		[T1]
21.	Designing of equipments like	No	
	oscilloscope, Digital multimeter,		_
22.	Design of digital Voltmeters with	No	

	transducer input Virtual Laboratory		
	transducer input Virtual Laboratory		
23.	Web based Laboratory	No	
UNIT V	APPLICATIONS		
24.	Distributed I/O modules- Application of	No	
	Virtual Instrumentation: Instrument		
	Control		
25.	Development of process database	No	[T1]
	management system, Simulation of		
	systems using VI		
26.	Development of Control system,	No	
	Industrial Communication, Image		
	acquisition and processing,		
27.	Motion control. Development of Virtual	No]
	Instrument using GUI,		
28.	Real-time systems, Embedded	No	1
	Controller, OPC,		
29.	HMI / SCADA software, Active X	No]
	programming.		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

 Cycle Test – I
 5%

 Cycle Test – II
 5%

 Model Test
 10%

 Assignment /Seminar/online test/quiz
 5%

 Attendance
 5%

 Final exam
 70%

Prepared by : Ms R.Abinethri, Asst Professor	Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
Ms R.Abinethri	

Course Coordinator HOD/EI